forked from gitea/gitea
1
0
Fork 0
gitea/vendor/github.com/andybalholm/brotli/huffman.go

654 lines
12 KiB
Go
Raw Normal View History

package brotli
/* Copyright 2013 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
/* Utilities for building Huffman decoding tables. */
const huffmanMaxCodeLength = 15
/* Maximum possible Huffman table size for an alphabet size of (index * 32),
max code length 15 and root table bits 8. */
var kMaxHuffmanTableSize = []uint16{
256,
402,
436,
468,
500,
534,
566,
598,
630,
662,
694,
726,
758,
790,
822,
854,
886,
920,
952,
984,
1016,
1048,
1080,
1112,
1144,
1176,
1208,
1240,
1272,
1304,
1336,
1368,
1400,
1432,
1464,
1496,
1528,
}
/* BROTLI_NUM_BLOCK_LEN_SYMBOLS == 26 */
const huffmanMaxSize26 = 396
/* BROTLI_MAX_BLOCK_TYPE_SYMBOLS == 258 */
const huffmanMaxSize258 = 632
/* BROTLI_MAX_CONTEXT_MAP_SYMBOLS == 272 */
const huffmanMaxSize272 = 646
const huffmanMaxCodeLengthCodeLength = 5
/* Do not create this struct directly - use the ConstructHuffmanCode
* constructor below! */
type huffmanCode struct {
bits byte
value uint16
}
func constructHuffmanCode(bits byte, value uint16) huffmanCode {
var h huffmanCode
h.bits = bits
h.value = value
return h
}
/* Builds Huffman lookup table assuming code lengths are in symbol order. */
/* Builds Huffman lookup table assuming code lengths are in symbol order.
Returns size of resulting table. */
/* Builds a simple Huffman table. The |num_symbols| parameter is to be
interpreted as follows: 0 means 1 symbol, 1 means 2 symbols,
2 means 3 symbols, 3 means 4 symbols with lengths [2, 2, 2, 2],
4 means 4 symbols with lengths [1, 2, 3, 3]. */
/* Contains a collection of Huffman trees with the same alphabet size. */
/* max_symbol is needed due to simple codes since log2(alphabet_size) could be
greater than log2(max_symbol). */
type huffmanTreeGroup struct {
htrees [][]huffmanCode
codes []huffmanCode
alphabet_size uint16
max_symbol uint16
num_htrees uint16
}
const reverseBitsMax = 8
const reverseBitsBase = 0
var kReverseBits = [1 << reverseBitsMax]byte{
0x00,
0x80,
0x40,
0xC0,
0x20,
0xA0,
0x60,
0xE0,
0x10,
0x90,
0x50,
0xD0,
0x30,
0xB0,
0x70,
0xF0,
0x08,
0x88,
0x48,
0xC8,
0x28,
0xA8,
0x68,
0xE8,
0x18,
0x98,
0x58,
0xD8,
0x38,
0xB8,
0x78,
0xF8,
0x04,
0x84,
0x44,
0xC4,
0x24,
0xA4,
0x64,
0xE4,
0x14,
0x94,
0x54,
0xD4,
0x34,
0xB4,
0x74,
0xF4,
0x0C,
0x8C,
0x4C,
0xCC,
0x2C,
0xAC,
0x6C,
0xEC,
0x1C,
0x9C,
0x5C,
0xDC,
0x3C,
0xBC,
0x7C,
0xFC,
0x02,
0x82,
0x42,
0xC2,
0x22,
0xA2,
0x62,
0xE2,
0x12,
0x92,
0x52,
0xD2,
0x32,
0xB2,
0x72,
0xF2,
0x0A,
0x8A,
0x4A,
0xCA,
0x2A,
0xAA,
0x6A,
0xEA,
0x1A,
0x9A,
0x5A,
0xDA,
0x3A,
0xBA,
0x7A,
0xFA,
0x06,
0x86,
0x46,
0xC6,
0x26,
0xA6,
0x66,
0xE6,
0x16,
0x96,
0x56,
0xD6,
0x36,
0xB6,
0x76,
0xF6,
0x0E,
0x8E,
0x4E,
0xCE,
0x2E,
0xAE,
0x6E,
0xEE,
0x1E,
0x9E,
0x5E,
0xDE,
0x3E,
0xBE,
0x7E,
0xFE,
0x01,
0x81,
0x41,
0xC1,
0x21,
0xA1,
0x61,
0xE1,
0x11,
0x91,
0x51,
0xD1,
0x31,
0xB1,
0x71,
0xF1,
0x09,
0x89,
0x49,
0xC9,
0x29,
0xA9,
0x69,
0xE9,
0x19,
0x99,
0x59,
0xD9,
0x39,
0xB9,
0x79,
0xF9,
0x05,
0x85,
0x45,
0xC5,
0x25,
0xA5,
0x65,
0xE5,
0x15,
0x95,
0x55,
0xD5,
0x35,
0xB5,
0x75,
0xF5,
0x0D,
0x8D,
0x4D,
0xCD,
0x2D,
0xAD,
0x6D,
0xED,
0x1D,
0x9D,
0x5D,
0xDD,
0x3D,
0xBD,
0x7D,
0xFD,
0x03,
0x83,
0x43,
0xC3,
0x23,
0xA3,
0x63,
0xE3,
0x13,
0x93,
0x53,
0xD3,
0x33,
0xB3,
0x73,
0xF3,
0x0B,
0x8B,
0x4B,
0xCB,
0x2B,
0xAB,
0x6B,
0xEB,
0x1B,
0x9B,
0x5B,
0xDB,
0x3B,
0xBB,
0x7B,
0xFB,
0x07,
0x87,
0x47,
0xC7,
0x27,
0xA7,
0x67,
0xE7,
0x17,
0x97,
0x57,
0xD7,
0x37,
0xB7,
0x77,
0xF7,
0x0F,
0x8F,
0x4F,
0xCF,
0x2F,
0xAF,
0x6F,
0xEF,
0x1F,
0x9F,
0x5F,
0xDF,
0x3F,
0xBF,
0x7F,
0xFF,
}
const reverseBitsLowest = (uint64(1) << (reverseBitsMax - 1 + reverseBitsBase))
/* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
where reverse(value, len) is the bit-wise reversal of the len least
significant bits of value. */
func reverseBits8(num uint64) uint64 {
return uint64(kReverseBits[num])
}
/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
/* Assumes that end is an integer multiple of step */
func replicateValue(table []huffmanCode, step int, end int, code huffmanCode) {
for {
end -= step
table[end] = code
if end <= 0 {
break
}
}
}
/* Returns the table width of the next 2nd level table. |count| is the histogram
of bit lengths for the remaining symbols, |len| is the code length of the
next processed symbol. */
func nextTableBitSize(count []uint16, len int, root_bits int) int {
var left int = 1 << uint(len-root_bits)
for len < huffmanMaxCodeLength {
left -= int(count[len])
if left <= 0 {
break
}
len++
left <<= 1
}
return len - root_bits
}
func buildCodeLengthsHuffmanTable(table []huffmanCode, code_lengths []byte, count []uint16) {
var code huffmanCode /* current table entry */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* step size to replicate values in current table */ /* size of current table */ /* symbols sorted by code length */
var symbol int
var key uint64
var key_step uint64
var step int
var table_size int
var sorted [codeLengthCodes]int
var offset [huffmanMaxCodeLengthCodeLength + 1]int
var bits int
var bits_count int
/* offsets in sorted table for each length */
assert(huffmanMaxCodeLengthCodeLength <= reverseBitsMax)
/* Generate offsets into sorted symbol table by code length. */
symbol = -1
bits = 1
var i int
for i = 0; i < huffmanMaxCodeLengthCodeLength; i++ {
symbol += int(count[bits])
offset[bits] = symbol
bits++
}
/* Symbols with code length 0 are placed after all other symbols. */
offset[0] = codeLengthCodes - 1
/* Sort symbols by length, by symbol order within each length. */
symbol = codeLengthCodes
for {
var i int
for i = 0; i < 6; i++ {
symbol--
sorted[offset[code_lengths[symbol]]] = symbol
offset[code_lengths[symbol]]--
}
if symbol == 0 {
break
}
}
table_size = 1 << huffmanMaxCodeLengthCodeLength
/* Special case: all symbols but one have 0 code length. */
if offset[0] == 0 {
code = constructHuffmanCode(0, uint16(sorted[0]))
for key = 0; key < uint64(table_size); key++ {
table[key] = code
}
return
}
/* Fill in table. */
key = 0
key_step = reverseBitsLowest
symbol = 0
bits = 1
step = 2
for {
for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
code = constructHuffmanCode(byte(bits), uint16(sorted[symbol]))
symbol++
replicateValue(table[reverseBits8(key):], step, table_size, code)
key += key_step
}
step <<= 1
key_step >>= 1
bits++
if bits > huffmanMaxCodeLengthCodeLength {
break
}
}
}
func buildHuffmanTable(root_table []huffmanCode, root_bits int, symbol_lists symbolList, count []uint16) uint32 {
var code huffmanCode /* current table entry */ /* next available space in table */ /* current code length */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* 2nd level table prefix code */ /* 2nd level table prefix code addend */ /* step size to replicate values in current table */ /* key length of current table */ /* size of current table */ /* sum of root table size and 2nd level table sizes */
var table []huffmanCode
var len int
var symbol int
var key uint64
var key_step uint64
var sub_key uint64
var sub_key_step uint64
var step int
var table_bits int
var table_size int
var total_size int
var max_length int = -1
var bits int
var bits_count int
assert(root_bits <= reverseBitsMax)
assert(huffmanMaxCodeLength-root_bits <= reverseBitsMax)
for symbolListGet(symbol_lists, max_length) == 0xFFFF {
max_length--
}
max_length += huffmanMaxCodeLength + 1
table = root_table
table_bits = root_bits
table_size = 1 << uint(table_bits)
total_size = table_size
/* Fill in the root table. Reduce the table size to if possible,
and create the repetitions by memcpy. */
if table_bits > max_length {
table_bits = max_length
table_size = 1 << uint(table_bits)
}
key = 0
key_step = reverseBitsLowest
bits = 1
step = 2
for {
symbol = bits - (huffmanMaxCodeLength + 1)
for bits_count = int(count[bits]); bits_count != 0; bits_count-- {
symbol = int(symbolListGet(symbol_lists, symbol))
code = constructHuffmanCode(byte(bits), uint16(symbol))
replicateValue(table[reverseBits8(key):], step, table_size, code)
key += key_step
}
step <<= 1
key_step >>= 1
bits++
if bits > table_bits {
break
}
}
/* If root_bits != table_bits then replicate to fill the remaining slots. */
for total_size != table_size {
copy(table[table_size:], table[:uint(table_size)])
table_size <<= 1
}
/* Fill in 2nd level tables and add pointers to root table. */
key_step = reverseBitsLowest >> uint(root_bits-1)
sub_key = reverseBitsLowest << 1
sub_key_step = reverseBitsLowest
len = root_bits + 1
step = 2
for ; len <= max_length; len++ {
symbol = len - (huffmanMaxCodeLength + 1)
for ; count[len] != 0; count[len]-- {
if sub_key == reverseBitsLowest<<1 {
table = table[table_size:]
table_bits = nextTableBitSize(count, int(len), root_bits)
table_size = 1 << uint(table_bits)
total_size += table_size
sub_key = reverseBits8(key)
key += key_step
root_table[sub_key] = constructHuffmanCode(byte(table_bits+root_bits), uint16(uint64(uint(-cap(table)+cap(root_table)))-sub_key))
sub_key = 0
}
symbol = int(symbolListGet(symbol_lists, symbol))
code = constructHuffmanCode(byte(len-root_bits), uint16(symbol))
replicateValue(table[reverseBits8(sub_key):], step, table_size, code)
sub_key += sub_key_step
}
step <<= 1
sub_key_step >>= 1
}
return uint32(total_size)
}
func buildSimpleHuffmanTable(table []huffmanCode, root_bits int, val []uint16, num_symbols uint32) uint32 {
var table_size uint32 = 1
var goal_size uint32 = 1 << uint(root_bits)
switch num_symbols {
case 0:
table[0] = constructHuffmanCode(0, val[0])
case 1:
if val[1] > val[0] {
table[0] = constructHuffmanCode(1, val[0])
table[1] = constructHuffmanCode(1, val[1])
} else {
table[0] = constructHuffmanCode(1, val[1])
table[1] = constructHuffmanCode(1, val[0])
}
table_size = 2
case 2:
table[0] = constructHuffmanCode(1, val[0])
table[2] = constructHuffmanCode(1, val[0])
if val[2] > val[1] {
table[1] = constructHuffmanCode(2, val[1])
table[3] = constructHuffmanCode(2, val[2])
} else {
table[1] = constructHuffmanCode(2, val[2])
table[3] = constructHuffmanCode(2, val[1])
}
table_size = 4
case 3:
var i int
var k int
for i = 0; i < 3; i++ {
for k = i + 1; k < 4; k++ {
if val[k] < val[i] {
var t uint16 = val[k]
val[k] = val[i]
val[i] = t
}
}
}
table[0] = constructHuffmanCode(2, val[0])
table[2] = constructHuffmanCode(2, val[1])
table[1] = constructHuffmanCode(2, val[2])
table[3] = constructHuffmanCode(2, val[3])
table_size = 4
case 4:
if val[3] < val[2] {
var t uint16 = val[3]
val[3] = val[2]
val[2] = t
}
table[0] = constructHuffmanCode(1, val[0])
table[1] = constructHuffmanCode(2, val[1])
table[2] = constructHuffmanCode(1, val[0])
table[3] = constructHuffmanCode(3, val[2])
table[4] = constructHuffmanCode(1, val[0])
table[5] = constructHuffmanCode(2, val[1])
table[6] = constructHuffmanCode(1, val[0])
table[7] = constructHuffmanCode(3, val[3])
table_size = 8
}
for table_size != goal_size {
copy(table[table_size:], table[:uint(table_size)])
table_size <<= 1
}
return goal_size
}