forked from gitea/gitea
1
0
Fork 0
gitea/vendor/github.com/pingcap/tidb/kv/memkv/btree.go

740 lines
12 KiB
Go

// Copyright 2013 The ql Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSES/QL-LICENSE file.
// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package memkv
import (
"io"
)
const (
kx = 128 //DONE benchmark tune this number if using custom key/value type(s).
kd = 64 //DONE benchmark tune this number if using custom key/value type(s).
)
type (
// cmp compares a and b. Return value is:
//
// < 0 if a < b
// 0 if a == b
// > 0 if a > b
//
cmp func(a, b []interface{}) int
d struct { // data page
c int
d [2*kd + 1]de
n *d
p *d
}
de struct { // d element
k []interface{}
v []interface{}
}
// Enumerator is the iterator for btree
Enumerator struct {
err error
hit bool
i int
k []interface{}
q *d
t *Tree
ver int64
}
// Tree is a B+tree.
Tree struct {
c int
cmp cmp
first *d
last *d
r interface{}
ver int64
}
xe struct { // x element
ch interface{}
sep *d
}
x struct { // index page
c int
x [2*kx + 2]xe
}
)
var ( // R/O zero values
zd d
zde de
zx x
zxe xe
)
func clr(q interface{}) {
switch z := q.(type) {
case *x:
for i := 0; i <= z.c; i++ { // Ch0 Sep0 ... Chn-1 Sepn-1 Chn
clr(z.x[i].ch)
}
*z = zx // GC
case *d:
*z = zd // GC
}
}
// -------------------------------------------------------------------------- x
func newX(ch0 interface{}) *x {
r := &x{}
r.x[0].ch = ch0
return r
}
func (q *x) extract(i int) {
q.c--
if i < q.c {
copy(q.x[i:], q.x[i+1:q.c+1])
q.x[q.c].ch = q.x[q.c+1].ch
q.x[q.c].sep = nil // GC
q.x[q.c+1] = zxe // GC
}
}
func (q *x) insert(i int, d *d, ch interface{}) *x {
c := q.c
if i < c {
q.x[c+1].ch = q.x[c].ch
copy(q.x[i+2:], q.x[i+1:c])
q.x[i+1].sep = q.x[i].sep
}
c++
q.c = c
q.x[i].sep = d
q.x[i+1].ch = ch
return q
}
func (q *x) siblings(i int) (l, r *d) {
if i >= 0 {
if i > 0 {
l = q.x[i-1].ch.(*d)
}
if i < q.c {
r = q.x[i+1].ch.(*d)
}
}
return
}
// -------------------------------------------------------------------------- d
func (l *d) mvL(r *d, c int) {
copy(l.d[l.c:], r.d[:c])
copy(r.d[:], r.d[c:r.c])
l.c += c
r.c -= c
}
func (l *d) mvR(r *d, c int) {
copy(r.d[c:], r.d[:r.c])
copy(r.d[:c], l.d[l.c-c:])
r.c += c
l.c -= c
}
// ----------------------------------------------------------------------- tree
// NewTree returns a newly created, empty tree. The compare function is used
// for key collation.
func NewTree(cmp cmp) *Tree {
return &Tree{cmp: cmp}
}
// Clear removes all K/V pairs from the tree.
func (t *Tree) Clear() {
if t.r == nil {
return
}
clr(t.r)
t.c, t.first, t.last, t.r = 0, nil, nil, nil
t.ver++
}
func (t *Tree) cat(p *x, q, r *d, pi int) {
t.ver++
q.mvL(r, r.c)
if r.n != nil {
r.n.p = q
} else {
t.last = q
}
q.n = r.n
if p.c > 1 {
p.extract(pi)
p.x[pi].ch = q
} else {
t.r = q
}
}
func (t *Tree) catX(p, q, r *x, pi int) {
t.ver++
q.x[q.c].sep = p.x[pi].sep
copy(q.x[q.c+1:], r.x[:r.c])
q.c += r.c + 1
q.x[q.c].ch = r.x[r.c].ch
if p.c > 1 {
p.c--
pc := p.c
if pi < pc {
p.x[pi].sep = p.x[pi+1].sep
copy(p.x[pi+1:], p.x[pi+2:pc+1])
p.x[pc].ch = p.x[pc+1].ch
p.x[pc].sep = nil // GC
p.x[pc+1].ch = nil // GC
}
return
}
t.r = q
}
//Delete removes the k's KV pair, if it exists, in which case Delete returns
//true.
func (t *Tree) Delete(k []interface{}) (ok bool) {
pi := -1
var p *x
q := t.r
if q == nil {
return
}
for {
var i int
i, ok = t.find(q, k)
if ok {
switch z := q.(type) {
case *x:
dp := z.x[i].sep
switch {
case dp.c > kd:
t.extract(dp, 0)
default:
if z.c < kx && q != t.r {
t.underflowX(p, &z, pi, &i)
}
pi = i + 1
p = z
q = z.x[pi].ch
ok = false
continue
}
case *d:
t.extract(z, i)
if z.c >= kd {
return
}
if q != t.r {
t.underflow(p, z, pi)
} else if t.c == 0 {
t.Clear()
}
}
return
}
switch z := q.(type) {
case *x:
if z.c < kx && q != t.r {
t.underflowX(p, &z, pi, &i)
}
pi = i
p = z
q = z.x[i].ch
case *d:
return
}
}
}
func (t *Tree) extract(q *d, i int) { // (r []interface{}) {
t.ver++
//r = q.d[i].v // prepared for Extract
q.c--
if i < q.c {
copy(q.d[i:], q.d[i+1:q.c+1])
}
q.d[q.c] = zde // GC
t.c--
return
}
func (t *Tree) find(q interface{}, k []interface{}) (i int, ok bool) {
var mk []interface{}
l := 0
switch z := q.(type) {
case *x:
h := z.c - 1
for l <= h {
m := (l + h) >> 1
mk = z.x[m].sep.d[0].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
case *d:
h := z.c - 1
for l <= h {
m := (l + h) >> 1
mk = z.d[m].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
}
return l, false
}
// First returns the first item of the tree in the key collating order, or
// (nil, nil) if the tree is empty.
func (t *Tree) First() (k []interface{}, v []interface{}) {
if q := t.first; q != nil {
q := &q.d[0]
k, v = q.k, q.v
}
return
}
// Get returns the value associated with k and true if it exists. Otherwise Get
// returns (nil, false).
func (t *Tree) Get(k []interface{}) (v []interface{}, ok bool) {
q := t.r
if q == nil {
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch z := q.(type) {
case *x:
return z.x[i].sep.d[0].v, true
case *d:
return z.d[i].v, true
}
}
switch z := q.(type) {
case *x:
q = z.x[i].ch
default:
return
}
}
}
func (t *Tree) insert(q *d, i int, k []interface{}, v []interface{}) *d {
t.ver++
c := q.c
if i < c {
copy(q.d[i+1:], q.d[i:c])
}
c++
q.c = c
q.d[i].k, q.d[i].v = k, v
t.c++
return q
}
// Last returns the last item of the tree in the key collating order, or (nil,
// nil) if the tree is empty.
func (t *Tree) Last() (k []interface{}, v []interface{}) {
if q := t.last; q != nil {
q := &q.d[q.c-1]
k, v = q.k, q.v
}
return
}
// Len returns the number of items in the tree.
func (t *Tree) Len() int {
return t.c
}
func (t *Tree) overflow(p *x, q *d, pi, i int, k []interface{}, v []interface{}) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c < 2*kd {
l.mvL(q, 1)
t.insert(q, i-1, k, v)
return
}
if r != nil && r.c < 2*kd {
if i < 2*kd {
q.mvR(r, 1)
t.insert(q, i, k, v)
} else {
t.insert(r, 0, k, v)
}
return
}
t.split(p, q, pi, i, k, v)
}
// Seek returns an Enumerator positioned on a an item such that k >= item's
// key. ok reports if k == item.key The Enumerator's position is possibly
// after the last item in the tree.
func (t *Tree) Seek(k []interface{}) (e *Enumerator, ok bool) {
q := t.r
if q == nil {
e = &Enumerator{nil, false, 0, k, nil, t, t.ver}
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch z := q.(type) {
case *x:
e = &Enumerator{nil, ok, 0, k, z.x[i].sep, t, t.ver}
return
case *d:
e = &Enumerator{nil, ok, i, k, z, t, t.ver}
return
}
}
switch z := q.(type) {
case *x:
q = z.x[i].ch
case *d:
e = &Enumerator{nil, ok, i, k, z, t, t.ver}
return
}
}
}
// SeekFirst returns an Enumerator positioned on the first KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekFirst() (e *Enumerator, err error) {
q := t.first
if q == nil {
return nil, io.EOF
}
return &Enumerator{nil, true, 0, q.d[0].k, q, t, t.ver}, nil
}
// SeekLast returns an Enumerator positioned on the last KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekLast() (e *Enumerator, err error) {
q := t.last
if q == nil {
return nil, io.EOF
}
return &Enumerator{nil, true, q.c - 1, q.d[q.c-1].k, q, t, t.ver}, nil
}
// Set sets the value associated with k.
func (t *Tree) Set(k []interface{}, v []interface{}) {
pi := -1
var p *x
q := t.r
if q != nil {
for {
i, ok := t.find(q, k)
if ok {
switch z := q.(type) {
case *x:
z.x[i].sep.d[0].v = v
case *d:
z.d[i].v = v
}
return
}
switch z := q.(type) {
case *x:
if z.c > 2*kx {
t.splitX(p, &z, pi, &i)
}
pi = i
p = z
q = z.x[i].ch
case *d:
switch {
case z.c < 2*kd:
t.insert(z, i, k, v)
default:
t.overflow(p, z, pi, i, k, v)
}
return
}
}
}
z := t.insert(&d{}, 0, k, v)
t.r, t.first, t.last = z, z, z
return
}
func (t *Tree) split(p *x, q *d, pi, i int, k []interface{}, v []interface{}) {
t.ver++
r := &d{}
if q.n != nil {
r.n = q.n
r.n.p = r
} else {
t.last = r
}
q.n = r
r.p = q
copy(r.d[:], q.d[kd:2*kd])
for i := range q.d[kd:] {
q.d[kd+i] = zde
}
q.c = kd
r.c = kd
if pi >= 0 {
p.insert(pi, r, r)
} else {
t.r = newX(q).insert(0, r, r)
}
if i > kd {
t.insert(r, i-kd, k, v)
return
}
t.insert(q, i, k, v)
}
func (t *Tree) splitX(p *x, pp **x, pi int, i *int) {
t.ver++
q := *pp
r := &x{}
copy(r.x[:], q.x[kx+1:])
q.c = kx
r.c = kx
if pi >= 0 {
p.insert(pi, q.x[kx].sep, r)
} else {
t.r = newX(q).insert(0, q.x[kx].sep, r)
}
q.x[kx].sep = nil
for i := range q.x[kx+1:] {
q.x[kx+i+1] = zxe
}
if *i > kx {
*pp = r
*i -= kx + 1
}
}
func (t *Tree) underflow(p *x, q *d, pi int) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c+q.c >= 2*kd {
l.mvR(q, 1)
} else if r != nil && q.c+r.c >= 2*kd {
q.mvL(r, 1)
r.d[r.c] = zde // GC
} else if l != nil {
t.cat(p, l, q, pi-1)
} else {
t.cat(p, q, r, pi)
}
}
func (t *Tree) underflowX(p *x, pp **x, pi int, i *int) {
t.ver++
var l, r *x
q := *pp
if pi >= 0 {
if pi > 0 {
l = p.x[pi-1].ch.(*x)
}
if pi < p.c {
r = p.x[pi+1].ch.(*x)
}
}
if l != nil && l.c > kx {
q.x[q.c+1].ch = q.x[q.c].ch
copy(q.x[1:], q.x[:q.c])
q.x[0].ch = l.x[l.c].ch
q.x[0].sep = p.x[pi-1].sep
q.c++
*i++
l.c--
p.x[pi-1].sep = l.x[l.c].sep
return
}
if r != nil && r.c > kx {
q.x[q.c].sep = p.x[pi].sep
q.c++
q.x[q.c].ch = r.x[0].ch
p.x[pi].sep = r.x[0].sep
copy(r.x[:], r.x[1:r.c])
r.c--
rc := r.c
r.x[rc].ch = r.x[rc+1].ch
r.x[rc].sep = nil
r.x[rc+1].ch = nil
return
}
if l != nil {
*i += l.c + 1
t.catX(p, l, q, pi-1)
*pp = l
return
}
t.catX(p, q, r, pi)
}
// ----------------------------------------------------------------- Enumerator
// Next returns the currently enumerated item, if it exists and moves to the
// next item in the key collation order. If there is no item to return, err ==
// io.EOF is returned.
func (e *Enumerator) Next() (k []interface{}, v []interface{}, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, hit := e.t.Seek(e.k)
if !e.hit && hit {
if err = f.next(); err != nil {
return
}
}
*e = *f
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if e.i >= e.q.c {
if err = e.next(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, false
e.next()
return
}
func (e *Enumerator) next() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i < e.q.c-1:
e.i++
default:
if e.q, e.i = e.q.n, 0; e.q == nil {
e.err = io.EOF
}
}
return e.err
}
// Prev returns the currently enumerated item, if it exists and moves to the
// previous item in the key collation order. If there is no item to return, err
// == io.EOF is returned.
func (e *Enumerator) Prev() (k []interface{}, v []interface{}, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, hit := e.t.Seek(e.k)
if !e.hit && hit {
if err = f.prev(); err != nil {
return
}
}
*e = *f
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if e.i >= e.q.c {
if err = e.next(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, false
e.prev()
return
}
func (e *Enumerator) prev() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i > 0:
e.i--
default:
if e.q = e.q.p; e.q == nil {
e.err = io.EOF
break
}
e.i = e.q.c - 1
}
return e.err
}